BTLA Agonist (ANB032) R&D Event

May 25, 2023 1:15pm PT / 4:15pm ET

Forward looking statement

This presentation and any accompanying oral presentation contains forward-looking statements within the meaning of the "safe harbor" provisions of the Private Securities Litigation Reform Act of 1995, including, but not limited to: the timing of initiation of the Company's clinical trials, including rosnilimab's clinical trials in rheumatoid arthritis and in a second indication; the timing of the release of data from the Company's clinical trials, including imsidolimab's Phase 3 clinical trial in GPP, rosnilimab's Phase 2b clinical trial in rheumatoid arthritis and ANB032's Phase 2b clinical trial in atopic dermatitis; the timing of ANB033's IND filing; statements regarding efficacy, safety and proof of mechanism from blinded data from rosnilimab's clinical trial in alopecia areata and the timing of release of additional data from this trial; the Company's ability to find a licensing partner for imsidolimab or etokimab and the timing of any such transaction; and the Company's projected cash runway. Statements including words such as "plan," "continue," "expect," or "ongoing" and statements in the future tense are forward-looking statements. These forward-looking statements involve risks and uncertainties, as well as assumptions, which, if they do not fully materialize or prove incorrect, could cause its results to differ materially from those expressed or implied by such forward-looking statements. Forward-looking statements are subject to risks and uncertainties that may cause the company's actual activities or results to differ significantly from those expressed in any forward-looking statement, including risks and uncertainties related to the company's ability to advance its product candidates, obtain regulatory approval of and ultimately commercialize its product candidates, the timing and results of preclinical and clinical trials, the company's ability to fund development activities and achieve development goals, the company's ability to protect intellectual property and other risks and uncertainties described under the heading "Risk Factors" in documents the company files from time to time with the Securities and Exchange Commission. These forward-looking statements speak only as of the date of this presentation, and the company undertakes no obligation to revise or update any forward-looking statements to reflect events or circumstances after the date hereof.

Certain information contained in this presentation may be derived from information provided by industry sources. The Company believes such information is accurate and that the sources from which it has been obtained are reliable. However, the Company cannot guarantee the accuracy of, and has not independently verified, such information.

The trademarks included herein are the property of the owners thereof and are used for reference purposes only. Such use should not be construed as an endorsement of such products.

Agenda for today

TOPIC	SPEAKER
AnaptysBio: Best-In-Class Immune Cell Modulators	Dan Faga Chief Executive Officer
Checkpoint Agonism and ANB032, a BTLA Agonist	Martin Dahl, Ph.D. Senior Vice President, Research
Unmet Needs in Atopic Dermatitis (AD) and Need for Additional Targets	Emma Guttman, M.D., Ph.D. Professor and Chair of Dermatology Icahn School of Medicine, Mount Sinai
Targeting AD with ANB032: Translational Data	Martin Dahl, Ph.D. Senior Vice President, Research
ANB032: Phase 1 Results and AD Phase 2b Trial	Paul Lizzul, M.D., Ph.D. Chief Medical Officer
Closing Remarks	Dan Faga Chief Executive Officer
Q&A	AnaptysBio

Best-in-class immune cell modulating antibodies restore immune balance across autoimmune & inflammatory diseases

immunology targets

Significant royalty potential

Two decades of leadership in antibody discovery

Checkpoint agonists restore immune balance

6

ANB032 has potential to treat wide range of systemic inflammatory diseases*

 BTLA agonists modulate immune cells:

 inhibit activated T cell proliferation, reduce inflammatory cytokine secretion and modulate DC function including inducing Tregs

 Image: Description of the secret inflammatory cytokine secret inflammatory

Atopic dermatitis:

>\$16 billion global sales by 2030**

AD market to grow significantly given unmet patient need Th1, Th2, Th17, Th22 and DCs drive atopic dermatitis pathogenesis

• SOC only directly targets Th2 pathway

Expect ANB032 to drive deeper responses across broader patient population

Restore immune balance

* Therapeutic area classes include dermatology, rheumatology, gastroenterology, metabolic, neurology and respiratory. ** GlobalData, AD Global Drug Forecast and Analysis, 2030.

ANB032's mechanism of action matches atopic dermatitis disease pathogenesis

Checkpoint agonism may deliver differentiated outcomes while restoring immune balance in inflammatory and autoimmune diseases

BTLA agonism inhibits activated T cell proliferation, reduces inflammatory cytokine secretion and modulates DC function including induction of Tregs

Th1, Th2, Th17, Th22 and dendritic cells drive AD pathogenesis

ANB032, supported with translational preclinical and Phase 1 safety data, has potential for deep responses across a broad patient population in AD

Global Phase 2b trial initiated with top-line data expected by yearend 2024

Agenda for today

TOPIC	SPEAKER
AnaptysBio: Best-In-Class Immune Cell Modulators	Dan Faga Chief Executive Officer
Checkpoint Agonism and ANB032, a BTLA Agonist	Martin Dahl, Ph.D. Senior Vice President, Research
Unmet Needs in Atopic Dermatitis (AD) and Need for Additional Targets	Emma Guttman, M.D., Ph.D. Professor and Chair of Dermatology Icahn School of Medicine, Mount Sinai
Targeting AD with ANB032: Translational Data	Martin Dahl, Ph.D. Senior Vice President, Research
ANB032: Phase 1 Results and AD Phase 2b Trial	Paul Lizzul, M.D., Ph.D. Chief Medical Officer
Closing Remarks	Dan Faga Chief Executive Officer
Q&A	AnaptysBio

Modulating immune cells by targeting checkpoint receptors may restore immune balance

Checkpoint agonists can restore immune balance to deliver differentiated outcomes

Efficacy

- Inhibits activated immune cells, acting directly on dysregulation
- Deep responses across broad patient population

Durability

Restoring immune balance

Safety

- Agonist class well-tolerated to date
- No evidence of carcinogenicity with T cell modulators, such as abatacept, in decades of use

Checkpoint CD45 Receptor T cell Dephos-Phos-ITIM phorylation phorylation **Phosphatase Kinase**

Checkpoint ligands on opposing cells:

- engage initiating kinases
 - exclude phosphatases

Checkpoint receptors on immune cells:

regulated by kinases (on)

and phosphatases (off)

AnaptysBio's checkpoint agonists optimize inhibitory signaling by enabling tight immune synapse formation

Fc independent checkpoint receptor agonism

Fc receptor binding affinity <u>AND</u> membrane proximal binding optimizes agonism

BTLA is key node of immune regulation

B and T lymphocyte attenuator (BTLA) is a potent modulator of T cells, B cells and dendritic cells (DC)

Expressed only on immune cells and preferentially on activated immune cells

Dysregulation of BTLA pathway accelerates onset and exacerbates disease

Proof of mechanism: Agonism of BTLA pathway in dermatitis model

ANB032: Best-in-class BTLA agonist antibody

ANB032: IgG4 antibody (non-depleting)

- Binds to BTLA on epitope proximal to immune cell
- Fc receptor binding profile contributes to differentiated potency
- Non-blocking of HVEM engagement with optimized antigen binding affinity

ANB032's agonist signal modulates immune cells

- Inhibits activated T cell proliferation
- Reduces inflammatory cytokine secretion
- Modulates DC function, including inducing Tregs

ANB032's optimized Fc receptor engagement significantly enhances BTLA agonism

Jurkat BTLA SHP2 Recruitment Assay methodology: BTLA and SHP2 are fused with complementary enzyme fragments, when SHP2 is recruited to activated phosphorylated BTLA, the enzyme donor and enzyme acceptor form active β -gal that is detected by chemiluminescence.

ANB032 demonstrates best-in-class in-vivo efficacy in humanized murine model of GvHD

ANB032 modulates immune cell activity with optimized agonistic signaling

Checkpoint agonism leverages natural immune regulatory mechanisms to safely resolve inflammation and restore balance

BTLA is a key checkpoint that modulates activity of T, B and dendritic cells

ANB032 optimized Fc receptor engagement and proximal binding epitope significantly enhances BTLA agonism

ANB032 has demonstrated preclinical proof of mechanism and bestin-class efficacy in vivo

Agenda for today

TOPIC	SPEAKER
AnaptysBio: Best-In-Class Immune Cell Modulators	Dan Faga Chief Executive Officer
Checkpoint Agonism and ANB032, a BTLA Agonist	Martin Dahl, Ph.D. Senior Vice President, Research
Unmet Needs in Atopic Dermatitis (AD) and Need for Additional Targets	Emma Guttman, M.D., Ph.D. Professor and Chair of Dermatology Icahn School of Medicine, Mount Sinai
Targeting AD with ANB032: Translational Data	Martin Dahl, Ph.D. Senior Vice President, Research
ANB032: Phase 1 Results and AD Phase 2b Trial	Paul Lizzul, M.D., Ph.D. Chief Medical Officer
Closing Remarks	Dan Faga Chief Executive Officer
0&A	AnaptysBio

Unmet Needs in Atopic Dermatitis and Need for Additional Targets

Emma Guttman-Yassky, M.D., Ph.D. Waldman Professor of Dermatology System Chair, Department of Dermatology Icahn School of Medicine at Mount Sinai, New York, NY Immediate Past President, International Eczema Council

Atopic dermatitis

- Most common inflammatory skin disease (~7% of adults in US, 15% of children)
- > 20-30% of patients have moderate-to-severe disease
- Large unmet need for long-term disease control

The therapeutic drought is finally ending!

Impact of moderate-to-severe AD¹⁻⁶

AD = atopic dermatitis; QoL = quality of life

Silverberg JI, et al. Ann Allergy Asthma Immunol 2018;121(3):340–347; 2. Chrostowska-Plak D, et al. Acta Derm Venereol 2009;89(4):379–383;
 Zuberbier T, et al. J Aller Clin Immunol 2006;118(1):226–232; 4. Patel KR, et al. J Am Acad Dermatol 2019;80(2):402–410;
 Silverberg JI, et al. Ann Allergy Asthma Immunol 2019;123(2):144–151; 6. Schmidt SAJ, et al. JAMA Dermatol 2021;157(6):1–9.

Greater understanding of disease pathogenesis is enabling development of novel therapies

Dupilumab (anti-IL-4Rα) targets IL-4 and IL-13

EASI-50/75/90 in pooled solo 1 & 2 monotherapy 16-week studies

*P<0.0001 vs placebo.

The only licensed dose for dupilumab in moderate-to-severe AD patients is 300 mg Q2W.

Baseline EASI mean scores (SD): placebo, dupilumab 300 mg q2w, and dupilumab 300 mg qw were 34.0 (14.4), 32.4 (13.3), and 32.5 (13.3), respectively.

Dup=dupilumab; EASI=Eczema Area and Severity Index; EASI-50/75/90=proportion of patients with \geq 50%/75%/90% improvement in EASI score from baseline; q2w=every 2 weeks; qw=weekly; SD=standard deviation.

1. Ferrándiz C, et al. Dupilumab in moderate-to-severe atopic dermatitis: pooled efficacy results from two identically designed randomized phase 3 trials (SOLO 1 & 2). Presented at: EADV 2017; September 13-17, 2017; Geneva, Switzerland.

Where are we: Less than 25% AD patients are completely satisfied with SOC

AD is highly heterogeneous and involves multiple immune cytokines (e.g., IFN-γ, IL-4, IL-13, IL-17, IL-22)

AD, atopic dermatitis; IgE, immunoglobulin E; QoL, quality of life; Th, T helper cell

1. Chovatiya R, Silverberg JI. Am J Clin Dermatol 2022. Online ahead of print; 2. Facheris P....and Guttman-Yassky E. Allergy 2023; ; 3. Spergel JM, et al. J Allergy Clin Immunol 2003;112:S118–27; 4. Renert-Yuval Y, et al. Ann Allergy Asthma Immunol 2020;124:28–35; 5. Czarnowicki T, et al. J Allergy Clin Immunol 2019;143:1–11; 6. Weidinger S, et al. Nat Rev Dis Primers 2018;4:1; 7. Bieber T. Ann Dermatol 2010;22:125–37

What's in the pipeline for AD patients?

		Target	Compound	Phase	Sponsor
Ś		IL-13	Tralokinumab	FDA-, EMA-approved	LEO
ocker		IL-13	Lebrikizumab	3	Lilly
ne blo		IL-13	Cendakimab	2	BMS
ytoki	ſ	IL-13RA1	ASLAN004	2	ASLAN
igle c	L	IL-4RA	CBP201	3	Connect Biopharma
Sin		IL-31	Nemolizumab	3	Galderma /Chugai
	`	IL-22RA1	LEO138559	2	LEO
ie cell lator	(OX40	KHK4083/ AMG 4051	3	Amgen (KHK)
Immur modul		OX40L	Amlitelimab/KY1005	2b	Sanofi
		BTLA agonist	ANB032	2b	AnaptysBio
ules		CCR4	RPT193	2b	RAPT
Sm ² Iolec		S1PR	Etrasimod	3	Arena/Pfizer
			IL-17	7C, IL-33, TSLP, IL-36, IL-1, IL-1	7A, IL-5 failed clinical trials in AD

EU=European Union; IL=interleukin; IV=intravenous; TSLP=thymic stromal lymphopoietin.

JAK Inhibitors: Topical: Ruxolitinib (FDA approved in US as of September 2021), Delgocitinib (Approved in Japan)

Other topicals: Roflumilast, Tapinarof (phase 3 in AD)

Immune cell

Oral: Abrocitinib, Upadicitinib, Baricitinib (FDA/EU/UK approval; baricitinib not FDA-approved for AD, only for AA)

Atopic dermatitis emerges as systemic disease

- Systemic inflammation is well established in psoriasis
- Higher immune activation has been recently reported in peripheral blood from AD vs. psoriasis patients
 - Increased activated T cells
 - Increased circulatory cytokines and cardiovascular associated markers
- Several population-based studies showed increased cardiovascular disease in AD

Czarnowicki T....and Guttman-Yassky E..: J Allergy Clin Immunol. 2015 Jul;136(1):208-11; Ungar B....and Guttman-Yassky E et al.: J Invest Dermatol 2016 Brunner PM...Guttman-Yassky E. Sci Reports 2017. Silverberg JI Allergy 2015 70: 1300–1308

To fully understand the effect of a given treatment, we need an integrated model of skin and blood AD biomarkers

How are we facilitating therapeutic development in AD

Both successes and failures have helped to frame pathogenic concepts and therapeutic directions

AD biology is heterogenous and uniquely fits BTLA MOA

Pathogenesis linked broadly to Th2, Th1, Th17, Th22 as well as dendritic cells BTLA expressing cells (Th1, Th2, Th17, Th22, B, Dendritic) are clinically

validated drivers of disease in

atopic dermatitis

ANB032: Best-in-class BTLA agonist antibody

ANB032: IgG4 antibody (non-depleting)

- Binds to BTLA on epitope proximal to immune cell
- Fc receptor binding profile contributes to differentiated potency
- Non-blocking of HVEM engagement with optimized antigen binding affinity

ANB032's agonist signal modulates immune cells

- Inhibits activated T cell proliferation
- Reduces inflammatory cytokine secretion
- Modulates DC function, including inducing Tregs

Agenda for today

TOPIC	SPEAKER			
AnaptysBio: Best-In-Class Immune Cell Modulators	Dan Faga Chief Executive Officer			
Checkpoint Agonism and ANB032, a BTLA Agonist	Martin Dahl, Ph.D. Senior Vice President, Research			
Unmet Needs in Atopic Dermatitis (AD) and Need for Additional Targets	Emma Guttman, M.D., Ph.D. Professor and Chair of Dermatology Icahn School of Medicine, Mount Sinai			
Targeting AD with ANB032: Translational Data	Martin Dahl, Ph.D. Senior Vice President, Research			
Targeting AD with ANB032: Translational Data ANB032: Phase 1 Results and AD Phase 2b Trial	Martin Dahl, Ph.D. Senior Vice President, Research Paul Lizzul, M.D., Ph.D. Chief Medical Officer			
Targeting AD with ANB032: Translational Data ANB032: Phase 1 Results and AD Phase 2b Trial Closing Remarks	Martin Dahl, Ph.D. Senior Vice President, Research Paul Lizzul, M.D., Ph.D. Chief Medical Officer Dan Faga Chief Executive Officer			

BTLA is broadly expressed on immune cells driving atopic dermatitis pathogenesis

T cells and dendritic cells are hallmarks of AD skin

T cells

DCs

BTLA pathway is dysregulated in AD tissue...

BTLA is elevated and HVEM is decreased, suggesting insufficient agonism in diseased skin

...and in the periphery

BTLA is elevated and HVEM is decreased, suggesting insufficient agonism in circulating T Cells

BTLA expression remains elevated after treatment with IL-13 targeted biologic

ANB032 inhibits pathogenic T cell amplification in both periphery and skin

Inhibition of activated T cell proliferation and reduction of inflammatory cytokine secretion

Broad T cell (Th1, Th2, Th17 and Th22) signatures characterize atopic dermatitis

ANB032 inhibits T cell proliferation in AD patientderived PBMCs

ANB032 inhibits Th1, Th2, Th17 and Th22 cytokine secretion in AD patient-derived PBMCs

BTLA highly expressed on mature DCs

BTLA expression

ANB032 modulates dendritic cell function

Reduction of mature dendritic cells (DCs) enhances the direct inhibitory effect on T cells and induces CD4+ FOXP3+ Tregs

ANB032 inhibits DC maturation and reduces antigen presentation and co-stimulatory molecules

ANB032-treated DCs induce functional Tregs offering potential to restore immune balance

ANB032 inhibits T- and DC-mediated inflammation that are validated drivers of AD pathogenesis

BTLA pathway is dysregulated and BTLA is broadly expressed on T cells and dendritic cells that drive all phases of AD pathogenesis

ANB032 directly inhibits proliferation of and cytokine secretion from AD patient-derived pathogenic Th1, Th2, Th17, Th22 cells

ANB032 modulates dendritic cells which enhances the direct inhibitory effect on T cells and induces Tregs

Agenda for today

ΤΟΡΙΟ	SPEAKER
AnaptysBio: Best-In-Class Immune Cell Modulators	Dan Faga Chief Executive Officer
Checkpoint Agonism and ANB032, a BTLA Agonist	Martin Dahl, Ph.D. Senior Vice President, Research
Unmet Needs in Atopic Dermatitis (AD) and Need for Additional Targets	Emma Guttman, M.D., Ph.D. Professor and Chair of Dermatology Icahn School of Medicine, Mount Sinai
Targeting AD with ANB032: Translational Data	Martin Dahl, Ph.D. Senior Vice President, Research
ANB032: Phase 1 Results and AD Phase 2b Trial	Paul Lizzul, M.D., Ph.D. Chief Medical Officer
Closing Remarks	Dan Faga Chief Executive Officer
Q&A	AnaptysBio

BTLA agonists may treat all stages of AD

ANB032 demonstrated favorable safety and tolerability with rapid and sustained PK/PD activity

96 healthy volunteers in SAD and MAD cohorts in Phase 1 study

- Favorable ~2-week half-life with IV and SQ dosing
- Full receptor occupancy (RO) within hours and maintained for >30 days

Rapid and sustained target engagement on both T and B cells

• Duration of reduced BTLA expression persisted in dose-dependent manner

Well-tolerated with no dose limiting tox

- No SAEs
- Most AEs mild-to-moderate, short duration, dose independent and resolved without sequelae
- No evidence of infection risk or cancer risk to date

◆ %RO
▲ Total Cell Surface BTLA (% of Baseline)

ANB032 Phase 2b in IL-13 mAb naïve and experienced AD patients

Scr	eening			Efficacy: ~3-month treatment						,	Safety/Durability: ~3-month follow up		
11					ANE	3032 S	C Dose	1		cical			cal
	160	E 1:1			ANE	3032 SO	C Dose	2		Statist ysis			V atisti lysis
		omize			ANE	3032 SO	C Dose	3		Anal			nal St Ana
		Rand		Placebo					Prin			Ē	
			1		Î		Ī		Τ				
Q2w o	r Q4wk		V2 Wk 0	V3 Wk2	V4 Wk4	V5 Wk 6	V6 Wk 8	V7 Wk 10	V8 Wk 12	V9 Wk 14	V10 Wk 16	V11 Wk 20	V12 Wk 24
			t	t	t	Ť	t	1	↑ [•]	opline D	ata		
Patient	population	•	Adult Inclu	ts with de both	modera n dupilu	ite-to-se mab/IL	evere a -13 naï	topic de ve and e	rmatiti: experie	s* nced pa	tients		
	Primary	•	Mear	Mean change from Baseline in EASI at Week 14									
Endpoints	 Secondary • EASI-75 • vIGA-AD 0 (clear) or 1 (almost clear) and a ≥ 2-point reduction (improvement of PNRS (itch), DLQI, SCORAD • Safety 						vement						

Exploratory endpoints • Th1/Th2/Th17 cytokines and other soluble biomarkers, tissue samples (tape strips, biopsies)

* Moderate-to-severe atopic dermatitis: at least 10% of their total body surface area (BSA), an Eczema Area and Severity Index (EASI) score \geq 16, and a validated Investigator Global Assessment for Atopic Dermatitis (vIGA) score \geq 3.

Explore predictive markers of treatment response

Goals

- Apply precision medicine to further development of ANB032 in AD and other diseases
- Profile immune impact and mechanistic markers of BTLA agonism
- Map immune changes from baseline onto current and future disease signatures

Periphery biomarkers

- T cell stimulation assay
- Transcriptomics
- Immunophenotyping (e.g., TBNK, Tregs)
- Soluble biomarkers and cytokines relevant to Th1/Th2/Th17/Th22 biology

Tissue biomarkers (tape strips and biopsies)

- Proteomics including cytokines
- Transcriptomics
- Immunophenotyping (e.g. TBNK, Tregs)

Top-line Week 14 data anticipated by YE 2024

Clinical team has deep experience conducting dermatology clinical trials, including in AD

Global Trial	Extensive AD relationships	Recruitment initiatives
40+ dermatology investigators with proven track record	Long history of relationships with global KOLs in AD	Robust training program
enrolling AD trials		Community outreach/
North America and Europe trial	Strong medical society engagement	auvocacy group engagement
sites		Social media campaign, patient resources and local advertising
	Collaboration with experienced and proven CROs in AD	

ANB032 may address need for improved treatment outcomes for AD patients

AD disease heterogeneity is not adequately addressed by standard of care

ANB032 mechanism could enable broader and deeper responses to resolve inflammation and restore immune balance

Phase 2b dose-finding study initiated in both IL-13 mAb naïve and experienced patients with moderate-to-severe AD

Top-line Phase 2b results expected in Q4 2024

Agenda for today

TOPIC	SPEAKER
AnaptysBio: Best-In-Class Immune Cell Modulators	Dan Faga Chief Executive Officer
Checkpoint Agonism and ANB032, a BTLA Agonist	Martin Dahl, Ph.D. Senior Vice President, Research
Unmet Needs in Atopic Dermatitis (AD) and Need for Additional Targets	Emma Guttman, M.D., Ph.D. Professor and Chair of Dermatology Icahn School of Medicine, Mount Sinai
Targeting AD with ANB032: Translational Data	Martin Dahl, Ph.D. Senior Vice President, Research
ANB032: Phase 1 Results and AD Phase 2b Trial	Paul Lizzul, M.D., Ph.D. Chief Medical Officer
Closing Remarks	Dan Faga Chief Executive Officer
Q&A	AnaptysBio

ANB032's mechanism of action matches atopic dermatitis disease pathogenesis

Checkpoint agonism may deliver differentiated outcomes while restoring immune balance in inflammatory and autoimmune diseases

BTLA agonism inhibits activated T cell proliferation, reduces inflammatory cytokine secretion and modulates DC function including induction of Tregs

Th1, Th2, Th17, Th22 and dendritic cells drive AD pathogenesis

ANB032, supported with translational preclinical and Phase 1 safety data, has potential for deep responses across a broad patient population in AD

Global Phase 2b trial initiated with top-line data expected by yearend 2024

Immune cell modulator development: Three phase 2 initiations in 2023

		Development Stage and Anticipated Milestones						
Antibody Program	Therapeutic Indication	Lead Optimization	IND Enabling	Phase 1	Phase 2	Phase 3		
Rosnilimab (PD-1 agonist)	Rheumatoid Arthritis				Phase 2b initiation Q3 2023 Top-line data mid 2025			
	Inflammatory Disease				Trial initiation YE 2023			
ANB032 (BTLA agonist)	Atopic Dermatitis				Phase 2b initiated Q2 2023 Top-line data YE 2024			
ANB033 (CD122 antagonist)	Inflammatory Diseases		IND submission H1 2024					